Acta Cryst. (1973). B29, 2610

Les Structures Cristallines et Moléculaires des Complexes Thiocyanato et Isothiocyanato d'Iridium ou de Rhodium(III). II.* Isothiocyanatopenta-ammine iridium(III) dichloride

PAR HOWARD FLACK

Laboratoire de Cristallographie aux Rayons X de l'Université, 32 Boulevard d'Yvoy, CH-1211 Genève 4, Suisse

(Reçu le 25 juin 1973, accepté le 4 juillet 1973)

Abstract. [Ir(NCS) (NH₃)₅]Cl₂, cubic, Fm3m (No. 225), a=10.314 (2) Å, Z=4, $D_x=2.46$ g cm⁻³, F.W. = 405.2, F(000) = 760. The colourless crystals were prepared by the method of H.-H. Schmidtke [*Inorg. Chem.* (1966) 5, 1682–1687]. This substance has the K₂PtCl₆ structure similar to fluorite with the isothiocyanate groups being disordered.

Introduction. Un monocristal presque sphérique de rayon 30 μ m a été choisi. La prise des données a été effectuée sur un diffractomètre automatique à quatre cercles (Philips PW 1100) avec la radiation Mo K α et un balayage $\theta/2\theta$. 1319 réflexions indépendantes avec sin $\theta/\lambda < 1,0$ Å⁻¹ ont été enregistrées dont seulement 113 avaient un |F| plus grand que 1,5 σ_F et ont été retenues pour l'affinement. La symétrie de Laue est m3m et la condition pour que la réflexion hkl soit présente est: h+k, k+l, (l+h)=2n ce qui indiquent les groupes d'espace F432, F43m et Fm3m. Ces intensités ont été corrigées des facteurs de Lorentz et de polarisation et d'un facteur d'absorption (μ =135,3 cm⁻¹) en supposant le cristal sphérique.

On a remarqué que la structure est isotype de celle de plusieurs composés comme $[Co(NH_3)_6]I_2$ qui contiennent six molécules H_2O ou NH_3 (Wyckoff, 1965). Comme on n'a pas pu trouver d'indications de surstructure ou d'ordre à courte distance, on suppose que les groupes NCS sont distribués au hasard dans les six positions possibles autour des atomes de Ir.

Les paramètres de position, les facteurs de température isotropes et un facteur d'échelle ont été affinés avec le programme de moindres carrés XFLS3 (Busing et al., 1971). Les facteurs de diffusion atomique avec les termes $\Delta f'$ et $\Delta f''$ pour Ir, N, S, C et Cl, indiqués dans International Tables for X-ray Crystallography (1962) ont été utilisés. On n'a jamais pris en considération la contribution des atomes d'hydrogène. La fonction de poids pour le dernier cycle était $w = 1/\sigma^2$ où σ est l'écart-type de F_o . L'affinement, qui portait sur 9 paramètres, a donné un résidu R ($R = \sum |\Delta F|/\sum F_o$) = 3,2%.

Les paramètres de position et de vibration ainsi obtenus sont inscrits dans le Tableau 1, les valeurs de F_o et de $|F_c|$ sont dans le Tableau 2, et les distances interatomiques dans le Tableau 3. La représentation stéréoscopique (Fig. 1) de la structure a été tracée à l'aide du programme ORTEP (Johnson, 1970). Pour des raisons de présentation elle ne montre qu'un seul atome de S situé à la position moyenne $\frac{1}{2}00$ entre les deux sites possibles 0,4900 et 0,5100.

Tableau 1. Paramètres atomiques de [Ir(NCS)(NH₃)₅]Cl₂

	Site	d'occu- pation	x	у	Z	В
Ir	4(<i>a</i>)	1,000	0,0	0,0	0,0	6,2 (1) Å ²
Cl	8(c)	1,000	0,25	0,25	0,25	13,5 (4)
S	24(e)	0,166	0,49 (6)	0,0	0,0	15(11)
Ν	24(e)	1,000	0,199 (2)	0,0	0,0	14,2 (6)
С	24(e)	0,166	0,32 (1)	0,0	0,0	10 (3)

Tableau 2. Valeurs de $h, k, l, F_o, |F_c|$ pour [Ir(NCS) (NH₃)₅]Cl₂

23 25 87 885 882 101	23.567865181321	012335621066789	3.000	367 115 115 20 100 107 65 107 65	-12-3		65 - 5 6 7 6 5 - 3 2 1 2 3 1	161 127 168 168 160 103 132 166 132 166 132 156 345 157	1526076485778766		 *3210012108767	577 . 2007 9 . 8 . 7 8 1 J C	6664725554675976767	 ***************	70513156705132.	72 95 132 196 140 131 140 149 168 149 149 149 149 149	76 128 200 200 128 200 128 56 101 206 100	 	3 3 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	30596287575955	128			 12197593105708	115 120 115 131 76 58 157 160 157 76 92	 	 8682C78529857986455	8363 1306 + 82 5 5 2 3 5 1
		8987	64 59 74	63 52 63 92	- i - i	12.3	3	150	146 115 83	-1	 , 	73	76 67 62		212	110 182 162	109 187 165	 1	;	\$7	54 13- 146	- 0	102	67 67 67	92 191 92	 	 5 S 6 J 6 8	61 68 67

Tableau	3.	Distances interatomiques (Å) de	е
		[Ir(NCS) (NH ₂) _e]Cl ₂	

Ir–N	2,05 (2) Å
C-S	1,7 (6)
N-C	1,25 (10)
lr–Cl	4,466 (1)

Discussion. Les paramètres de position des atomes de S et C sont très mal déterminés. D'une part, chaque position de S et C ne représente que 1,5 et 0,6 % de la densité électronique dans la maille; d'autre part, les positions des atomes de S sont très voisines d'une

Fig. 1. Représentation stéréoscopique de [Ir(NCS) (NH₃)₅]Cl₂.

^{*} Partie I: Flack & Parthé (1973).

position spéciale du groupe d'espace. Par conséquent, les distances interatomiques du groupe linéaire N-C-S sont susceptibles d'erreurs importantes.

Les facteurs de température isotropes pour chaque atome sont très élevés. On peut supposer que les vraies positions des atomes sont décalées par rapport aux positions moyennes pour accommoder le groupe NCS désordonné.

La structure du $[Ir(NCS) (NH_3)_5]Cl_2$ est isotype de celle de $[Co(NCS) (NH_3)_5]Cl_2$ (Snow & Boomsma, 1972), qui montre aussi les facteurs de température très élevés.

Cette détermination fait partie d'une étude sur les structures cristallines et moléculaires des complexes thiocyanato et isothiocyanato d'iridium et de rhodium (III) et fait suite à la première publication (Flack & Parthé, 1973).

Nous tenons à remercier ici le Professeur C. K. Jørgensen qui nous a suggéré ce problème et nous a

donné les monocristaux ainsi que le Professeur E. Parthé pour ses nombreuses discussions critiques.

Références

- BUSING, W. R., MARTIN, K. O., LEVY, H. A., ELLISON, R. D., HAMILTON, W. C., IBERS, J. A., JOHNSON, C. K. & THIESSEN, W. E. (1971). ORXFLS3: Crystallographic Structure Factor Least-Squares Program. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- FLACK, H. D. & PARTHÉ, E. (1973). Acta Cryst. B29, 1099-1102.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1970). ORTEP. Report ORNL-3794 (Second Revision), Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- SNOW, M. R. & BOOMSMA, R. F. (1972). Acta Cryst. B28, 1908–1913.
- WYCKOFF, R. W. G. (1965). *Crystal Structures.* 2nd ed. Vol. 3, p. 783. New York: Interscience.

Acta Cryst. (1973). B29, 2611

Magnesium Arsenate, Mg₃As₂O₈

By Narasimhan Krishnamachari and Crispin Calvo

Department of Chemistry, McMaster University, Hamilton, Ontario, Canada

(Received 20 June 1973; accepted 2 July 1973)

Abstract. Tetragonal, a=6.783 (2), c=18.963 (4) Å, V=842.47 Å³, $D_m=3.9$ (1) g cm⁻³, Z=6, $D_c=4.03$ g cm⁻³, space group I42d. Crystals were obtained from a melt (m.p. 1450 °C) starting with MgCO₃ and As₂O₅. 744 unique reflexions were used in a full-matrix leastsquares refinement yielding a final R of 0.043. The structure contains two distinct AsO₄ groups with average As–O bond lengths of 1.678 and 1.690 Å. Two of the three Mg ions are octahedrally coordinated and the third occupies a site of $\overline{4}$ symmetry. Introduction. Data were collected from a crystal of dimensions $0.02 \times 0.01 \times 0.01$ cm. 744 unique reflexions were collected with a Syntex PI automatic diffractometer (graphite monochromated, Mo $K\alpha$, scintillation counter, check reflexion after every 50, backgrounds measured at either side of the peak, variable scan, $2\theta \le 80^\circ$). 133 reflexions with positive measure had intensity less than 3σ , where σ was based on counting statistics for the peak and backgrounds. Absorption corrections were not applied ($\langle \mu R \rangle \simeq 1.0$). Conditions

Table 1. Atomic parameters for Mg₃As₂O₈

 U_{ij} 's in Å² are computed from $\beta_{ij} = 2\pi^2 b_i b_j U_{ij}$ where $T = \exp \{-[\beta_{11}h^2 + 2\beta_{12}hk + ...]\}$ appears in the structure-factor expression and b_j are reciprocal-lattice cell vectors.

		x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Mg(1)	8 <i>d</i>	0.2416 (6)	$\frac{1}{4}$	1.	0.008 (1)	0.005 (1)	0.008 (1)	_		-0.000(1)
Mg(2)	8 <i>c</i>	0	Ó	0.2284 (2)	0.011 (1)	0.007 (1)	0.007 (1)	-0.003(1)		—
Mg(3)	4 <i>b*</i>	0	0	$\frac{1}{2}$	0.014 (5)	U_{11}	0.013 (4)			—
As(1)	8d -	-0·3446 (1)	4	1 8	0.0050 (3)	0.0045 (3)	· 0·0053 (3)			-0.0005 (3)
As(2)	4a	0	0	0	0.0036 (6)	U_{11}	0.0053 (4)			_
O(1)	16e	0.0566 (7)	0.2074 (7)	0.0438 (2)	0.009 (2)	0.004 (1)	0.010 (2)	0.000 (1)	-0·004 (1)	-0.002(1)
O(2)	16e	0.4937 (9)	0.2883 (9)	0.1925 (2)	0.007 (2)	0.023 (3)	0.010 (1)	-0.001 (2)	0.005 (2)	-0.010(2)
O(3)	16e	0.2206 (8)	0.5464 (8)	0.1017 (3)	0.009 (2)	0.006 (2)	0.017 (2)	-0·003 (1)	-0.003 (2)	0.000 (1)

* Site is half occupied.